
J .  Fluid Mech. (1966), vol. 24, part 4, pp.  689-696 

Printed in Great Britain 

689 

The field boundary of two line currents in a plasma 
at uniform pressure 

By C. SOZOUt 
Mathematics Department, Northampton College of Advanced 

Technology, London, E.C. 1 

(Received 9 July 1965) 

A solution is obtained for the boundary of the magnetic field of two arbitrary line 
currents immersed in a plasma at uniform pressure. The linear dimensions of the 
boundary, which are determined for several sets of data, are proportional to the 
intensity of the line currents (assuming that their ratio is constant) and inversely 
proportional to  the square root of the plasma pressure. The cusps over the bound- 
ary, which when the two line currents are equal and opposite are symmetrical 
with respect to the line currents, move towards the weaker current until they 
eventually disappear on the line joining the two currents. When the distance 
between the currents is such that when the cusps disappear the two line currents 
lie in the same cavity, some plasma gets trapped inside the cavity. When the 
cavities of two line currents of the same sign touch we get an abrupt instability; 
the plasma is suddenly pushed out by the surface currents and this results in 
the formation of a larger field cavity. 

1. Introduction 
The cavity in which sources of magnetic field are confined by a plasma has 

been studied by several authors in an attempt to estimate theoretically the 
shape and size of the cavity carved out of the solar plasma by the geomagnetic 
field. The problem of determining the cavity in which a three-dimensional dipole 
field is confined by a streaming plasma is intractable and has been studied only 
by approximate methods (see Beard 1960; Midgley & Davis 1963; Mead & 
Beard 1964). Midgley & Davis (1962) and Slutz (1962) used numerical methods 
to estimate the cavity of a three-dimensional dipole field in a uniform plasma 
pressure. 

Fortunately, exact solutions can be obtained for two-dimensional models by 
the use of conformal mapping. Thus the problem of a cold plasma streaming 
past a two-dimensional dipole has been solved independently by Dungey 
(1961), Hurley (1961) and Zhigulev & Romishevskii (1959). 

The problem of a two-dimensional dipole field under uniform plasma pressure 
has been examined by the present author (1964). In  this note we extend this case 
and determine the cavity in which the magnetic field of two arbitrary line cur- 
rents is confined by an external plasma a t  a uniform pressure. We assume an 
equilibrium state such that a t  the boundary of the cavity there is a thin current 
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sheath with the plasma outside the cavity. We also assume that the location 
and intensity of the line currents is such that both of them are in one and the 
same cavity. 

We obtain an exact solution, but when the location and intensity of the line 
currents is given we have to solve numerically a pair of equations for the deter- 
mination of two constants in order that we may be able to specify the boundary. 
Thus it is simpler to determine a boundary that corresponds to a given ratio of 
the intensity of the line currents and then specify the location of the line currents. 

2. Equations of the problem 
Let the magnetic field be B = (Bx, B,, 0). This must satisfy the following con- 

ditions : V .  B = 0 everywhere I 
V x B = 0 everywhere inside the cavity except at the (1) 

(2) 

line currents. 1 
At the boundary 

IBi2=B:+Bi=p, 

where p/87r is the uniform plasma pressure. (1) is satisfied if 

B = Bx-iB, = B(z) ,  

where z = x + iy and a bar denotes complex conjugate. 
Since at the boundary the magnetic field is tangential we have 

B d z  = B,dx+B,dy = B.ds = & lBlds = kp*ds (3) 

using (2), where ds is an element of arc of the boundary. In (3) the positive 
sign holds when B and d s  are in the same direction and the negative sign holds 
when B and ds are in opposite directions. 

B = d#I/dx, (4) 
Let 

and let the two line currents be I, and I ,  situated at a, and a2, respectively. 
If we assume that very near the line currents the lines of force are not affected 
substantially by the plasma pressure, we require 

1 ( 5 )  
d$/dz = B(z) N - 2iI1/(2-- a,) when z -+ a,, 

- - 2iI,/(z - a2) when z -+ a2. 

Let us assume (Riemann's mapping theorem) that there is a transformation 
w(z) [and its inverse z(w)] that transforms the unknown domain in the z-plane 
into a unit circle in the zu-plane so that the origins in the two domains correspond. 
Let also the points a, and a, in the z-plane correspond to points A ,  and A,, 
respectively, in the w-plane, that is 

ui(al) = A ,  or z(A,) = a,, 
w(a2) = A ,  or z(A,) = a,. 

(6) 1 
If we assume a, and a, to be real, the symmetry of the problem requires that 
A, and A ,  are also'real. If  #I is expressed in terms of w we have 

$ ( z )  = g(w)- (7)  
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From ( 5 ) ,  (6) and (7) we get 

N -- 2i12 as w--f A,, 
W-A, 
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that is, the singularities of dq5ldx in the x-plane become singularities of dgldw 
at the corresponding points in the w-plane. Equations (3), (4) and (7) show that 
dg is real on the circle IwI = 1. This, and the fact that dg/dw has two simple 
poles a t  A ,  and A ,  inside the unit circle, requires that 

-=  -2 i  
dw ( w f k ,  A,w-1 w - A ,  A,w-1 

I, A, +--- 1 2  
(9) 

Since d$/dz = (dg/dw) (dwldz), from (3), (4) and (9) we find that at the boundary 

Since w(z) transforms the domain in the z-plane conformally into a circle 
in the w-plane, dwldz (and dzldw) is regular in the domain, that is, it has no zeros 
or singularities. If the boundary has cusps the transformation is not conformal 
there and dzldw is not regular. This may happen if the two line currents are 
flowing in opposite directions. In  this case we may get two cusps symmetrical 
with respect to the line joining the two line currents. All these conditions and 
equation (10) are satisfied by 

p4 dz (A-Xw)(K-Xw) _- -  - 
2Idw (A,w- 1)2(A2w- 1)2 '  

where I = I, (assumed different from zero) and 

I = {( 1 -A;)  (1 + A,),+ C( 1 - A ; )  (1 + A,)2)6 
+{(l -A:) (1 - A,),+ C(1- A,)2 (1 -A;)}) 

and C = 12/Il. Equations ( l l ) ,  (12) and (13) show that dzldw may vanish at 
conjugate points on the boundary (Jwl = 1) if Il and I, are of opposite sign. In  
this case we get two cusps at the boundary and the transformation is not confor- 
mal there. 
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Integrating (1 1) and arranging the constant of integration so that the origins 
in the two planes correspond we get the required transformation 

(A,A - X )  (A,n - X) @,A- X) (A2X - X) \  w l - A , w  
Plog ___ ___ 

1-A,w I 1-A,?” 

(141 

(15) 

+ 
1 - A1w 

&= 
21 

where 
F = { ( X  - A,A) (X - A,X) + ( X  - A,X) ( X  - A2A)}/(A2 -A1)3. 

If we choose a, negative and a, positive, the corresponding points A ,  and 
A ,  will be negative and positive, respectively. If a, = - a,, equations (6) and (14) 
require that 

( X  - A,A) (x - A&) (X - A,A) (x - A,K) A,  
2I 1-A: 1 - A , A ,  1 + 

- A,R) (x - A,X) (X - A,h) (1 
1-A; 

+ 21 1 - A , A ,  

When the two line currents are of the same intensity A ,  = - A ,  and (17)  

(18) 

(19) 

becomes identical with (16). In  this case (16) becomes 

p+a,/~ = A2[2+(A;2-A;)log{(l +Al) / ( l  -A;) } ] ,  

@u,/I = 2 4  (A,1-AJ210g{(1 -A;)/(1 +A:)}, 

when the two currents are flowing in the same direction, and 

when they are flowing in opposite directions. 

3. Results and discussion 
For a given set of data we have to solve equations (16) and (17) for A,, A ,  and 

then use (14) to determine the boundary. Thus it would be simpler to prescribe 
A,, A ,  and the ratio of the intensity of the line currents and use (14) to determine 
the boundary and the position of the line currents. It follows from (14) that the 
linear dimensions of the boundary are proportional to I/p4. 

When the two line currents are of the same intensity we obtain the boundary 
by prescribing A ,  and A ,  in (14). The distance between the line currents is 
obtained from (18) when the line currents are flowing in the same direction, or 
from (19) when the line currents are flowing in opposite directions. The results 
are shown in table 1 and figure 1. 

The right-hand side of (19) is a monotonic function of A, increasing from zero 
when A ,  = 0, to 2 when A ,  = 1. When A ,  is small we get a dipole-like boundary 
(Sozou 1964). When A ,  increases, that is when the distance between the line 
currents increases, the cavity expands (figure 1) and the cusps become deeper. 
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As A ,  +- 1 the boundary tends to become two circles with the cusps going down 
to the origin. In  the limit (A,  = 1) we get two circles touching at the origin, and 
since our domain is not simple the transformation breaks down. 

Equation (18) has two roots, that is two values of A,, when the distance be- 
tween the line currents is greater than the sum of the radii of the circular cavities 
in which each current is separately confined by the plasma. This implies that in 

Curve 

A 
B 
C 
D 
E 
A 
B 
C 
D 

A1 

- 0.7795 
- 0.8319 
- 0.9 
- 0.5119 
- 0.25 
- 0.9 
- 0.75 
- 0.50 
- 0.25 

A2 
0.7795 
0.8319 
0.9 
0.5119 
0.25 
0.9 
0.75 
0.50 
0.25 

TABLE I 

2P&lIl 

5.4004 
5.4620 
5.3226 
4 
1.9974 
3.7990 
3.1336 
1.7012 
0.4798 

12/11 

1 
1 
1 
1 
1 

- 1  
- 1  
- 1  
- 1  

1 0 9 8 7 6  1 3 2 1 .  I 2  3 4 6 j 8 x  

FIGURE 1. (a) Currents of the same sign. (b) Currents of opposite sign. Quarter cross- 
section of the cavity of two line currents of equal intensity equidistant from the origin, 
in a plasma at uniform pressure. Letters show the boundary and the position of the 
currents on the real axis. X = 2p*x/I, Y = 2p*y/I. 

( f i  1 (b) 

this case we may get two different cavities for the same set of data. One of the 
cavities, however, is unstable. Physically this can be explained as follows: At the 
boundary the magnetic field is tangential and thus the surface current is propor- 
tional to the magnetic field. Since the magnitude of the magnetic field at the 
boundary is constant and since the sum of the surface currents is constant-equal 
and opposite to the inducing currents inside the cavity-the length of the 
boundary is constant. Thus, when we increase the distance between the line 
currents the cavity expands along the axis of the currents and contracts perpen- 
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dicular to it and eventually a waist develops over the boundary. When the position 
A (figure 1) is reached (corresponding to A ,  = 0.7795), the length of the cavity 
along the line of the currents is a maximum. If we increase the distance between 
the line currents further, the cavity contracts in all directions until the position 
B (corresponding to A ,  = 0.8319) is reached. If we now try to separate the line 
currents further, the magnetic field at the centre of the waist becomes too weak 
to stand the plasma pressure and the one cavity domain breaks down abruptly. 

~~ 

Curve A1 A ,  2 P h / I l  Wl 
A - 0.2255 0.2454 1 0.1 
B - 0.2864 0.3679 1 - 0.1 
C - 0.3153 0.4839 1 - 0.135 
D - 0.3338 0.6486 1 - 0.145 
E - 0'3620 0.5010 1 - 050 

TABLE 2 

I' 

7 4 3 2 1 1 2 3 4x 
FIGURE 2. Half the cross-section of the cavity of two line currents in a plasma at uniform 

pressure. x = 2p+x/1~, Y = 2pfyl1,. 

If, when the position B (figure 1) is reached, we reduce the distance between the 
line currents, we either get a position the reverse of that obtained when the die- 
tance between the line currents was increasing (this corresponds to values of 
A ,  < 0.8319) or the cavity contracts in all directions (this corresponds to 
0.8319 < A ,  < I), and the waist increases until the limiting case (A,  = 1) 
when the transformation breaks down and we get two circles touching at the 
origin. Curve C (figure 1) is a curve obtained from the second alternative. We 
think that the second alternative may represent an unstable situation. 

The fact that there is only one solution of (18) when the distance between the 
line currents is less than the sum of the radii of the circular cavities in which each 
current is separately confined by the plasma means that when the circular 
boundaries of two line currents flowing in the same direction are brought to con- 
tact we get an abrupt instability (explosion) and a larger cavity enclosing both 
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currents. This happens because of the overlapping of the surface currents at the 
point of contact and the resulting sudden increase there of the Lorentz force 
by a factor of 2. The Lorentz force pushes the plasma quickly outwards. This sets 
the surface currents in motion outwards from the cavity and thus we get a larger 
cavity (curve D of figure 1) containing both currents. 

I Y  
A 3t 

3.5 3 2 1 1 x  
FIGURE 3. Half the cross-section of the cavity of two line currents, when the boundary 
touches the axis of the currents, in a plasma at uniform pressure. Letters show the 
boundary and the positions of the currents on the real axis. X = 2 p b / I l ,  Y = 2p~yy/I l .  

Curve A,  A ,  2P*a,l4 2P*a2/4 1 2 / 1 1  

A - 0-30 0.30 - 0.5686 0.3201 - 0.3095 
B - 0.20 0.20 - 0.2710 0.1854 - 0.4648 

TABLE 3 

Qualitatively, similar results are of course expected when the two line currents 
are of different intensities. Figure 2 shows boundaries produced by line currents 
of different intensities. The corresponding data (A,  and A ,  were obtained from 
equations (16) and (17)) are shown in table 2. 

When the two line currents are flowing in opposite directions the cusps move 
towards the weaker current and eventually disappear on the axis of the currents. 
When the distance between the line currents is smaller than the sum of the radii 
of the circular cavities in which each current is separately confined by the plasma, 
the angle between the axis of the currents and the cusps gets smaller as the dis- 
tance between the currentsisreducedor as the weak current gets weaker (figure 2). 
Thus eventually the cusps become parallel to the axis of the currents and maxima 
of the boundary. In  the limiting case the boundary closes, touching the axis 
of the currents behind the cusps, and thus it encloses some plasma within the 
cavity. This geometrical configuration is shown in figure 3. Table 3 shows the 
corresponding data. The surface currents a t  the points of contact (figure 3) 
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are flowing in the same direction. Thus in this case we get again an abrupt 
instability similar to the one considered before. The boundary becomes a con- 
tinuous curve but with some plasma trapped inside the cavity. The surface 
currents that are also trapped in the cavity are equal and opposite and cancel 
out. This mechanism of trapping plasma inside a field cavity may be of some 
importance in astrophysics. 
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